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Chapter 5  Exemplars 
 
 
 
 
 
 

Exemplar 1 A. M. ≥  G. M. 

Exemplar 2 Plane Area 

Exemplar 3 The Binomial Theorem 
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Exemplar 1: 
 
A. M. ≥  G. M. 

 
 
Objective:  To prove A. M. ≥  G. M. without the application of Backward Induction 
 
Pre-requisite knowledge: (1) The Principle of Mathematical Induction 

(2) Fundamental techniques in proving absolute inequalities 
 
Description of the Activity: 
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numbers.  It was suggested in the Syllabuses for Secondary Schools – Pure Mathematics 
(Advanced Level) 1992 that teachers may prove An ≥ Gn by backward induction if required.  
However, backward induction is deleted from this Curriculum.  Some suggestions to prove 
the inequality are as follows: 
 
Method 1 
 It is obvious that 11 GA =  and 22 GA ≥ . 

Assume that kk GA ≥ is true, where k  is a positive integer greater than or equal to 2. 
When 1+= kn ,  
Case (i) If 121 +=== kaaa L , then 11 ++ = kk GA . 
Case (ii) If not all 121 +ka , ,a ,a K  are equal, we may assume, without loss of generality, 

that 11121 ++ <≤≤≤ kk aa and aaa L . 
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∴ 11 ++ > kk GA  holds. 

From cases (i) and (ii), we have 11 ++ ≥ kk GA  

By the principle of mathematical induction, nn GA ≥  is true for all natural numbers n . 
 
Method 2 
 It is obvious that 11 GA =  and 22 GA ≥ . 

Assume that kk GA ≥  is true, where k  is a positive integer greater than or equal to 2. 
Let the geometric mean and the arithmetic mean of 
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∴ 11 ++ ≤ kk AG  holds. 

By the principle of mathematical induction, nn GA ≥  is true for all natural numbers n . 
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Method 3 
 It is obvious that 11 GA =  and 22 GA ≥ . 

Assume that kk GA ≥  is true, where k  is a positive integer greater than or equal to 2. 
When 1+= kn ,  
Case (i) If 121 +=== kaaa L , then 11 ++ = kk GA . 
Case (ii) If not all 121 +ka , ,a ,a K  are equal, we may assume, without loss of generality, 

that 11121 ++ <≤≤≤ kk aa and aaa L . 
Since kk GA ≥ , we have 
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∴ 11 ++ > kk GA  holds. 

From cases (i) and (ii), we have 11 ++ ≥ kk GA . 

By the principle of mathematical induction, nn GA ≥  is true for all natural numbers n . 
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Method 4 
 It is obvious that 11 GA =  and 22 GA ≥ . 

Assume that kk GA ≥  is true, where k  is a positive integer greater than or equal to 2. 
When 1+= kn ,  
Case (i) If 121 +=== kaaa L , then 11 ++ = kk GA . 
Case (ii) If not all 121 +ka , ,a ,a K  are equal, we may assume, without loss of generality, 
that 11121 ++ <≤≤≤ kk aa and aaa L . 

It follows that k
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By the Binomial Theorem, we have 
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∴ 11 ++ > kk GA  holds. 

From cases (i) and (ii), we have 11 ++ ≥ kk GA . 

By the principle of mathematical induction, nn GA ≥  is true for all natural numbers n . 
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Exemplar 2: 
 
Plane Area 

 
 
Objective:  To prove that the area bounded by the curve with parametric equations x=x(t), 

y=y(t), and the lines OA, OB is  ∫ −
1
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where the parameters of A and B are t0 and t1 respectively. 
 
Pre-requisite knowledge: (1) The application of definite integrals to find the area under 

a curve in Cartesian form. 
 (2) The Fundamental Theorem of Integral Calculus. 
 
Description of the Activity: 
 
Many teachers used to prove the formula (*) by means of formulae related to the polar 

coordinate system.  The formula (*) can be readily derived from ∫
β

α
θd

2
1 2r , which gives 

the area bounded by the curve with the polar equation )(θfr =  and the two radii with 
radius vectors αθ =  and βθ = .  The contents related to the polar coordinate system are 
deleted from this curriculum.  A suggestion to prove the formula (*) is as follows: 
 
 
 
 
 
 
 
 
 
 
A curve with the parametric equations  x=x(t), y=y(t)  is shown in the diagram above.  
The parameters of A and B are t0 and t1 respectively.  Without loss of generality, we may 
assume that, when the parameter t increases, the curve is continuous and goes in the 
anticlockwise direction.   
 

O 

B(t1)

A(t0)

C D
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Area of the shaded region = Area of ∆ BOC + Area of ABCD − Area of ∆ AOD 
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i.e. The area bounded by the curve with parametric equations x=x(t), y=y(t) and the lines OA, 

OB is ∫ −
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Exemplar 3: 
 
The Binomial Theorem 

 
 
Objective: To prove the Binomial Theorem for positive integral indices. 
 
Pre-requisite knowledge: The relations between the roots and coefficients of a 

polynomial equation with real coefficients. 
 
Description of the Activity: 
 
Most teachers apply the Principle of Mathematical Induction to prove the Binomial Theorem 
for positive integral indices.  An alternative way to prove that, for positive integers n,  

nn
n

nn
n

rrnn
r

nnnnnnn bCabCbaCbaCbaCaCba +++++++=+ −
−

−−− 1
1

22
2

1
10 ............)(  

is as follows: 
 

Let  01
1

1 ......)( axaxaxaxabx k
k

n
n

n
n

n ++++++=+ −
− , where nn aaaa ,...,,, 110 −  are 

real constants. 

Since the equation 0bx n =+ )(  has n repeated roots  x=−b, 

the equation 0...... 01
1

1 =++++++ −
− axaxaxaxa k

k
n

n
n

n  has n roots nn xxxx ,...,,, 121 −  

with bxxxx nn −===== −121 ... . 
 

By using the relations between the roots and coefficients of a polynomial equation with 
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In the kth equality above, the left-hand side is the sum of the product of k terms of xi . 

Since bxxxx nn −===== −121 ... , 
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Putting  x=a, we have 
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